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Nth-order minimum uncertainty products for arbitrary N >  -1 
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Saudi Arabia 
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Abstract. This paper considers the problem of finding the quantum states that minimize 
the products of the 'absolute value' Nlh-order fluctuation of two canonically conjugate 
operators. A scheme is applied to the problem, wherein the exact solution state is approxi- 
mated by working in a subspace consisting of the ground state plus a finite number of 
higher-order states, using a variational technique. The solution is first obtained for the 
ground state, and this is subsequently compared to  the solution assuming 2 x 2  and 3 x 3  
spaces. Far positive N we obtain a small, smooth decrease in the value of the fluctuation 
as the space increases and expect the 3 x 3 space results to be close to the exact Nth-order 
fluctuation. For negative N, however, we get an abrupt decrease in the fluctuation as the 
space increases. This result we interpret as being due to the fact the variational technique 
is trying to admix higher states (which have smaller components at the origin) into the 
wavefunction in order to counter the singularity of the 1x1". IplN operators at the origin. 

1. Introduction 

Recently the authors have considered [ l ]  the problem of finding the states which 
minimize the product of the Nth-order fluctuations of two canonically conjugate 
operators. The Nth-order fluctuation of an operator is based on a simple generalization 
of the mean-squared fluctuation of an operator as defined in ordinary quantum 
mechanics, e.g., for an operator x, the Nth-order fluctuation is given by  AX)^ = 
(x")-(x)", where ( ) denotes expectation value. The problem originated in connection 
with 'higher order squeezing' [2] and, as pointed out by Hong and Mandel who 
introduced the concept, in this context odd-N states have undesirable properties. Thus 
we restricted our attention to the even (non-trivial) integral values of N = 2,4,6, . . . . 

Since the appearance of [ I ]  the authors have received a suggestion [3] that the 
work's limited, even-integral domain of N values could readily be widened by redefining 
the Nth-order fluctuation in terms of absolute values of the operators. Hence, letting 
UN be the product of the (generalized) fluctuations of two canonically conjugate 
operators, x, p (with commutator [ x , p ]  = i), we would now seek to minimize 

In considering an expression such as ( I )  one may wonder how to evaluate the part 
containing the expectation value of the absolute value of an operator, e.g., IpI in the 
position representation. The authors have adopted the following pragmatic technique. 
Given a wavevector I*), go to the position representation where the operator x is 
represented by the c-number function x, the wavefunction is &'), and (WlixlNIW) is 
readily computable by the ordinary techniques of integral calculus. Now switch to the 
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momentum representation wherein p is a c-number and with ( p l y )  in hand (e.g., from 
the Fourier transform of (xIY)), (YIIplNIY) may also be readily computed, and UN 
found. Since the expectation value of an operator is independent of representation the 
result is the same as would be found by any other method. Thus (1) has been given 
unambiguous status. 

The procedure used to minimize UN is similar to that followed in [l]. U, is 
computed when the wavevector is a trial function composed of a superposition of 
harmonic oscillator states, In). In  the course of the calculation it is found that only 
the states n = 0,4,8, . . . contribute. The coefficients of the oscillator states are varied 
and the minimum of UN sought. The calculation can be done analytically for a trial 
wavevector containing only the states IO), (4). Once the state 18) is mixed in calculations 
must be carried out numerically, and this has been accomplished using the software 
program MathCAD [4]. Before tuming to the details of the general calculation it is 
interesting to consider the values for UN in the state IO). 

R Lynch and H A  Mavromaris 

2. Ground state value of U,  

As is well known the ground state of the harmonic oscillator minimizes the ordinary 
mean-squared fluctuation (Y~(Ax~)~Y)(Y~(A~~)~Y). Here 

(AX)' = (x*)-(x)' 

and similarly for p. It is thus of interest to consider UN when IY) = IO). 

representation is [ 5 ]  
The normalized ground state harmonic oscillator wavefunction in the position 

(xlo)= (1/r)'/*exp(-x2/2) (2) 

(p10)=(l/2r)1/z exp(ipx)(x10)dx=(l/?r)1'4exp(-p2/2). (3) 

[(YI I x I ~ I Y ) ( Y I  I ~ l ~ l ~ ) i l / ~  = i - ( ~ ) / z ~ - ' r ( ~ / 2 )  

with the corresponding wavefunction in the momentum representation of 
m L 

The calculation of the product of the fluctuations is elementary, and one finds 

(4) 

where r( N) is the gamma function. For N = 2 one obtains the value of i, the same 
as is found for the ordinary product of mean-squared fluctuations. A plot of the 
right-hand side of (4) is shown in figure 1. It is interesting that the N = 2  value of this 
function almost, but not quite, represents its absolute minimum. The actual absolute 
minimum has been found numerically to be at N = 1.9233, with the value 0.4996. 

3. Solution for U, 

In [ l ]  we derived a method for obtaining the minimum value for UN.  This yields the 
eigenvalue equation 

fdxl" +IPI~)IY)= AlY) (5) 

where the wavefunction ('U) is normalized. The resulting eigenvalue A is (UN)%. 
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Figure I. Plot of ground State solution (solid line). Plot of 3 x 3  solution (dotted line). 

Previously we broke this down as H = H,+ H, and used the eigenfunctions of Ho for 
our basis. Here we simplify our procedure and merely adopt the complete simple 
harmonic oscillator basis In), expand IW) = 2;. c,ln), and solve ( 5 )  in successively larger 
truncated K x K spaces, using a numerical variational technique. 

4. Exact solution in subspace spanned by IO>, 14) 

We find that only IO), 14),18), ... contribute to the calculation. That the states 
Il), \3), . . . I S ) ,  , . do not contribute follows from the fact that the Hamiltonian in (6) 
commutes with the parity operator. The reason why the states 12), 16). 110). . . . etc do 
not contribute is more subtle. Tnis result can be obtained from general symmetry and 
group-theoretical arguments [31. But it can also be understood by noting for instance 
that whereas (~10) in (3)  can be obtained from (xl0) in (2) (and similarly ( ~ 1 4 ) .  . . can 
be obtained from (~14) .  . . ) merely by replacing x by p, to go from (~12)  to (~12)  (or 
(~16) .  , . to  (pj6) etc.) also invoives an additionai minus sign. Thus 
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3x3 SPRCE CRLCULRTIONS 

set: N := 5 

. 
7 4  3 2 
N + B'N + 168" + 896.N ... 

-1 -2 
H := - . + 6384 + 19712.N + 52352" ... 611 -3 -4  

+ 67584" + 40320.N 

H := H 
2.1 182 2.2 

. 

1. DEFINE MRTRIX H 

Matrix is H; define matrix elements: 

*H 
0,o 

1 r 1 i  r 4  3 2 
LN + 4.N + 20.N + 32.N + 24j .H 

0.0 
H I =  H H 
1.0 0.1 

2. CRLCULaTE LOWEST EIGENVRLUE 

-6 -7 
set solution tolerance: TOL := 10 Guess at eigenvalue: X i' 10 

A := rooti IH - x'identitYl3) I , x )  Solve for lowest eigenvalue: 

For N = 5 the 3-dimensional solution is: A - 0.9754 

N + l  

2 
The ground state value is: s := [[n-'5]]'r[-] . Value O f  9 1.1284 

Figure 2. Statement of MathCAD program 
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so that for instance 

( 0 1 q  2) = - (0 2) 
In other words 

(OiHi2)=0 

i.e. the state iii (and simiiariy 163, i io j . .  . j does not connect witn 10). On the other 
hand, for instance 

i.e. 

while 

i.e 

etc. 
i t  is eiementary to find the matrix eiements Ho,o, Hn., = H,,,,, H, , , ,  where 

0, 1,2,. . . correspond to IO), 14j, 18). . . . These are shown in figure 2. For the 2 x 2 space 
one then solves the characteristic equation, and the exact solution for A is: 

A = [ r(N)/2N-1r(N/2) [ f -  [ f z -  768[ N’ + 2N2+ 4N + 3]]”’] (7) 
48 1 

where 

f =  [ N4+4N’+20N2+ 32N+48]. 

5. Approximate solution in subspace spanned by IO>, 14>, 18) 

For this 3 x 3 space we need the additional matrix elements Ho.* = H2,0, = Hz,, , 
and H2.2. These are also given in figure 2, where an N4 factor is removed from the 
Hz,2 element to improve the convergence when using the approximation scheme. 

To solve this problem using the MathCAD ‘program’ shown in figure 2, we first 
choose a particular N, then set up the corresponding 3 x 3 matrix and find the lowest 
root of the characteristic equation, which is plotted in figure 1 alongside the 1 x 1 
solution. 

The 3 x 3  solution does not differ very much from the 2 x 2 solution which lies 
between the two curves in this figure. For example for N = 5 the 3 x 3 solution =0.9754, 
whereas the 2 x 2 solution gives 0.9864 and the ground state solution is 1.1284, i.e. the 
2 x 2 approximation is -87.4% the ground state solution while the 3 x 3 approximation 
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is -86.4% the ground state solution for this value of N. From our previous work we 
have found the general result that increasing the space beyond 3 x 3 does not sig- 
nificantly alter the expectation value. Actually for N = 4 , 6 , 8  in the 3 x 3 space we 
obtain 0.6984, 1.4822 and 4.2402 respectively versus the essentially exact results of [ 11 
namely 0.6984, 1.4765, and 4.1447 for these three N’s. Thus we expect the exact ground 
state of H for positive N to be quite close to the values we obtain for the 3 x 3 case. 

For negative N, however, one observes a discontinuous derivative and an abrupt 
decrease in the value of A as we cross the value N = 0. This result we interpret as being 
due to the fact that for N < 0 the variational technique is trying to admix higher states 
(which have smaller components a t  the origin) into the wavefunction in order to 
counter the singularity of the IxI”, ( p i N  operators at the origin. Another way of viewing 
this result for negative N is by noting that whereas H,,, , If2,* are positive for positive 
N, with H I , ,  < H2,2 ,  both these matrix elements become negative for N less than zero 
with H2,2 in fact crossing and becoming more negative than H,,,  as N approaches -1.  

R Lynch and H A  Maoromatis 

6. Summary and discussion 

A generalization of the ordinary mean-squared fluctuation of an operator used in 
ordinary quantum mechanics, utilizing the absolute value, allows one to discuss the 
minimum uncertainty product of two canonically conjugate operators for any value 
of N > -1. For N > 0 the authors’ approximation scheme yields values which are 
expected to be very close to that which would be obtained by an exact calculation. 

For negative N >  -1 the approximation scheme essentially fails and the authors 
offer a qualitative explanation for this development. 
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